

LiComPerl

DEVELOPMENT OF COMPOSITE LIGHTWEIGHT MATERIALS WITH UPGRADED PHYSICOCHEMICAL FUNCTIONALITY AND IMPROVED ECONOMIC FEASIBILITY

PI Annual Meeting Sept. 14th – 15th 2021

Project's Scope (I)

<u>Acquire know-how</u> on the development of composite lightweight materials, which can be applied to a variety of materials and applications:

- Perlite substrates of different particle size distributions (coarse, medium, fine, ultrafine expanded grains) expanded at different conditions
- Multi-functional materials of various physicochemical characteristics as coatings, e.g. inorganic and/or organic, photocatalytic, nano-materials
- Different preparation techniques: **coating** and/or **impregnation**

VTCA based on optimization of physicochemical functionality and therefore economics.

Project's Scope (II)

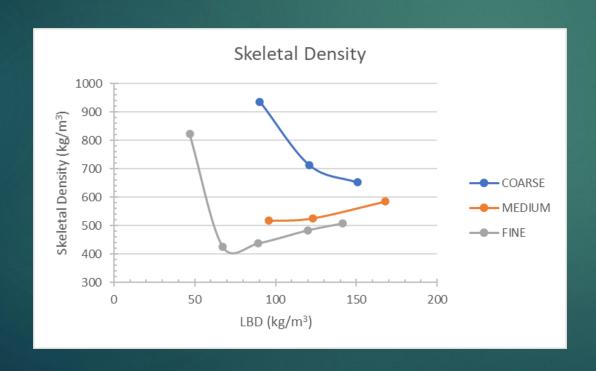
Applications:

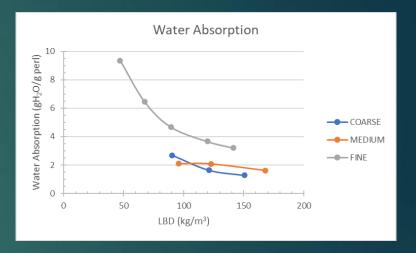
- Construction: lightweight & insulation
 - Functional material: Aerogel, PCMs
 - Perlite grades: fine, medium, coarse
- Environmental: Photocatalysis, oil & dye removal, water treatment (heavy elements)
 - ▶ Functional material: nano- TiO₂ & ZnO, alginate, emulsifiers, chitosan
 - Perlite grades: medium, coarse, fine, ultra fines
- Agriculture: hydroponics, soil beneficiation
 - Functional materials: zeolite, nutrients
 - Perlite grades: coarse, medium

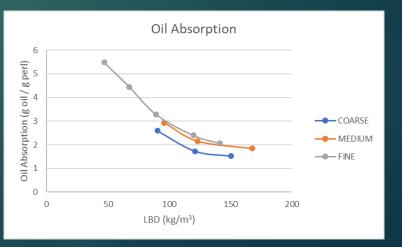
Work up to date (I)

Materials preparation

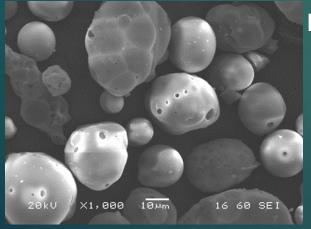
- > Coarse (2.5/1.2), Medium (1.2/0.5), Fines (0.3/0.075), Ultra-Fines (-63 µm)
- * The presented results and observations concern the tested materials.
- Module for microspheres expansion
- Expanded materials with different physical properties
 - Loose Bulk Density LBD
 - ► He- apparent density (Skeletal Density → Open/closed Structure)
 - Sinks-Shattered-Floats %v/v SSF
 - Mechanical properties (Compressibility, attrition, coverage)
 - Water & Oil absorption
 - Optical SEM observation



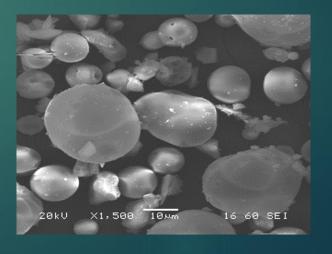

Work up to date (II)


Expanded materials with different physical properties

- Coarse 90 120 -150 kg/m³
- Medium 110 130 170 kg/m³
- \rightarrow Fine 45 70 90 120 140 kg/m³



Work up to date (III)


Expanded materials with different physical properties

- \rightarrow Ultra fines -63µm (D₆₃ 20 & 10 µm)
 - Optimum expansion conditions to 200 240 kg/m³

Κωδικός	LBD	Coverage Test	Compresibility	Oil Absorption		Skeletal Density
				(g oil/g	(g oil/100cc	
ULTRA FINE	(kg/m^3)	(%)	(%)	perlite)	perlite)	(kg/m³)
PE-20012/4-20	216	72.8%	34.6%	1.17	25.7	1214.2
PE-20012/6-10	242	76.0%	30.9%	0.94	22.7	1237.4

PE-20012/4-20

Decision Making for Next Steps

Next Steps:

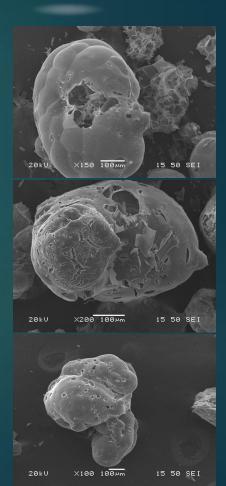
- Preparation of composite samples
- Evaluation of the technical & economic feasibility

Qualitative Screening:

- ✓ Employed grade:
 - Final application (e.g. ultra fines for photocatalytic plasters, medium or coarse for aerogel/perlite insulation)
- ✓ Impregnation / Coating Technique
 - Open / Closed Structure: CSP for coatings, OPS for impregnation

Quantitative Criteria for choosing the expanded grades:

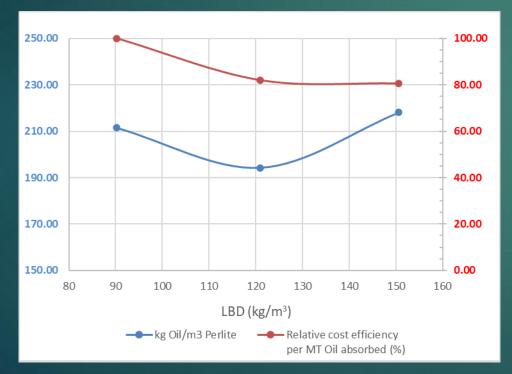
- ✓ Final application
- ✓ Technical data

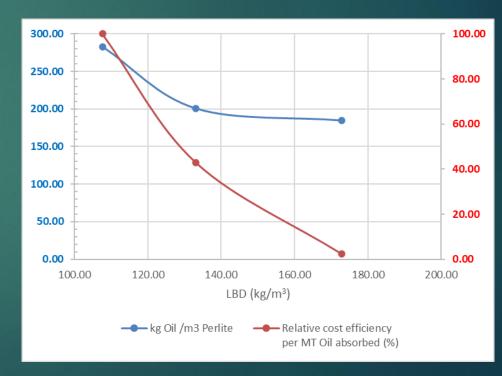


Expanded Fine Grades

45 kg/m³

90 kg/m³

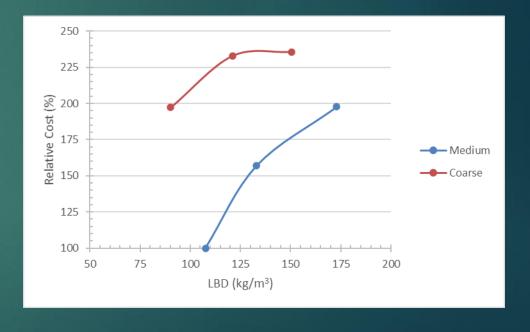

140 kg/m³


VTCA: "Oil Absorption Case" (I)

- Perlite substrate acts as an oil absorbent
- Composite: with nano-absorbents / emulsifiers

PE-20012/2 Medium

VTCA: "Oil Absorption Case" (II)

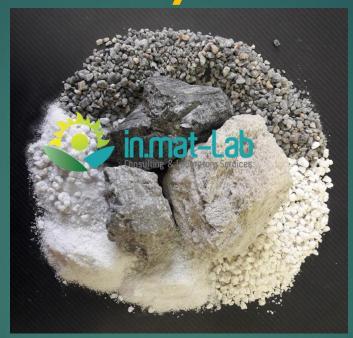

Comparison of different grades

- Medium grades: higher efficiencies due to increased oil absorption
- Coarse grades: qualitative advantages (easier handling, booms construction etc.)

Further Testing

- Medium grade 110 kg/m³
 - Coarse grade 90 kg/m³

Reference: Medium 110 kg/m³


Acknowledgements

► The project is funded by the Greek Ministry of Development and Investments within the Action "Research – Create – Innovate" of the platform NSRF PARTNERSHIP AGREEMENT 2014-2020 originating from the European Structural and Investment Funds (ESIF) of the European Union.

In.mat-Lab would like to thank also Sunrise Resources & Patrick Cheetham for the provision of the raw perlite samples and the fruitful collaboration

Thank you for your attention

Innovative Insulating & Inorganic Materials Laboratory

Lavrion Technological & Cultural park, P.O. Box 504, 195 00, Lavrion, Greece

T: +30 2292 300659, M: +30 69747538 & +30 6977692680

e-mail: info@in-mat-lab.eu

Website: <u>www.in-mat-lab.eu</u>

You can also follow us in LinkedIn: https://www.linkedin.com/company/in.mat-lab